Models and Images to support learning: Concrete to Abstract understanding
Bar Model Examples:

Balance Model:	Factor Bugs:
Balance Model $25+26=25 \times 2+1$ 'same as'	FACTOR BUGS Square Number
The pupils need to have a strong understanding of the = symbol. Understanding that the 'answer' can be written either side of the equals symbol.	The pupils should understand the antennae are always the 1 and the number itself. Square number bugs will have a tail. Prime number bugs will only have antennae. The legs show factor pairs. You can often see a doubling and halving pattern.
Place Value - pupils need to understand the difference between whole numbers and part numbers. They need to understand that the decimal point is the fence. The decimal point is very boring and never moves. Each column is 10 times bigger.	Little Miss Bossy is a picture trigger to remind pupils about rounding. The pupils should put an arrow on the place value column they are rounding to and then underline the bossy number. 'Round up' or 'Round down, digit stays the same.'
 'The numbers hold hands and jump!'	
'Steps' model is used to support pupils with x / \div 10,100 and 1000 . The decimal point is always in the same place. 'The numbers hold hand and jump!' - this stops them adding zeros in the wrong place.	The crocodiles help the pupils remember the symbols as the crocodiles eat the biggest! The pupils must also be able to read the symbol with the correct language.

Doubling:	Halving:
Doubling:	Halving:
X 2 = double	$\div 2$ = halve
$\times 4=$ double and double again	$\div 4=$ halve and halve again
X 8 = double, double and	$\div 8=$ halve, halve and halve
double again	again
Double $=$	Halve
Many pupils understand the concept of doubling, however, find halving very difficult, particularly with numbers like: 90 . This should be modelled with dienes and use of exchange. They need to understood that $90=80+10$	
Equivalent fractions:	Adding and subtracting fractions:
EQUIVALENT FRACTIONS 'what you do to the top, you do to the bottom'	
Diagrams and fractions walls can be used to help pupils understand this concept. We also have physical equipment for this concept in school. 'What you do to the top you do to the bottom to keep everything fair!'	The pupils need to understand that the denominators have to be the same to add and subtract fractions. Diagrams can be used to explain this. These can be extended to changing denominators to common denominators.
Proportion	
'what you do to one side, you do to the other'	
Keep everything fair and in proportion!	
Arrows method is used throughout the school, for direct proportion questions. What you do to one side, you do to the other. This is very similar to equivalent fractions	

The majority of questions in the KS2 curriculum can be linked back to one of these basic skills:
Toolkit of skills and knowledge to develop fluency
Understanding equivalence
Partitioning in different ways
Rounding
Knowledge of the number line
and counting

